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My usual work: Trusted Computing for Embedded Control Systems

“VulCAN: Efficient Component Authentication and Software Isolation for
Automotive Control Networks”, Van Bulck et al., ACSAC 2017. [VBMP17]
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Developing and integrating secure software components

Today:
1 Software security for the bad guys

Lazy ways of finding and exploiting software vulnerabilities
2 How to build “perfect software”

Probably there is no such thing; but let’s rule out as many vulnerabilities as
possible and affordable

3 How to protect perfect software at runtime
. . . because having no vulnerabilities in your code may not be enough
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Software security for the bad guys

You want to hack an application!
Stand-alone or client software on a device you
control, you have (at least) the compiled binary.

Goals: Hard-coded secrets? Application flags/
enable features? Disable adds? Access or modify
application data? Understand remote communication?
Find and weaponize a vulnerability?

What’s your approach?
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Software security for the bad guys
Option 1: Reversing, search manually

• IDA, debugger, decompiler, experience, luck,
brain cycles

• You’ll learn a lot about the program
• You may not find what you’re looking for
• Can be entertaining, can be a big waste of time

Option 2: Fuzzing, automated search
• Clever fuzzing software, little experience, CPU cycles
• You won’t learn that much but you’ll probably

get crashes almost for free
• May be easily thwarted by anti-debugging techniques

Option 3: Combine manual reversing and fuzzing
• . . .
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Option 2: Fuzzing, automated search

• Can we crash it: AFL [Zal10]
• Find an input that reproducibly leads

to SIGSEGV, SIGILL, SIGABRT
• This a library function, we can build

our own “client” as a test harness:
int main(int c, char* v[]) {
struct rrec r; struct SSL3 s3;
struct SSL s;
if (c >= 2)

read_in(v[1], &r);
s.s3 = &s3; s3.rrec = r;
return tls1_process_heartbeat(&s);

}

• Provide a seed test case “_ _ _ _”
• Compile with instrumentation, run in AFL
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int tls1_process_heartbeat (SSL *s) {
unsigned char *p = s->s3->rrec.data;
// ...
hbtype = *p; p++;
n2s(p, payload); pl = p;
if (hbtype == TLS1_HB_REQUEST) {
unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ... } ... }
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Option 2: Fuzzing, automated search

• Test case for a crash within one
second: 0x20 0x64 0x20 0x20

• Severity as a vulnerability depends
on executing context and skill of the
attacker

But what happened?
1 Take next test case from queue
2 Trim the test case to the smallest size

that does not alter testee’s behavior,
3 Repeatedly mutate the test case,
4 If any of the generated mutations

results in a new state transition, add it to the queue,
5 Go to 1.
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Option 2: Fuzzing, automated search
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int tls1_process_heartbeat (SSL *s) {
unsigned char *p = s->s3->rrec.data;
// ...
hbtype = *p; p++;
n2s(p, payload); pl = p;
if (hbtype == TLS1_HB_REQUEST) {
unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ... } ... }
Source: https://xkcd.com/1354/
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But . . .

But it’s a known vulnerability, extracted, simplified, . . .
Yes, that’s why it took only 1s.

But the input was really simple!
AFL pulls compressed multimedia files out of thin air. Also, there are specialised
tools for network traffic, HW interactions, video streams. Problem: Crypto.

But you instrumented source code! We ship only binaries!
QEMU mode! What about your libraries?

But we also obfuscate them! And there’s an obscure interpreter in there!
Does it still execute? Let’s wait it out. Problem: Opaque predicate.

But we have anti-debugging! And the red stuff above!
Fuzzing coverage will reveal dead ends, which can be resolved manually.

Any vulnerability can be found. Understand your system,
your assets, your attacker→ Threat Modelling
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Software security for application developers

How can we defend applications against fuzzing?
How can we defend against people with reverse engineering skills?

Fuzz harder?
Fuzz more cleverly?
Hire a bad guy and ask him
to do good stuff?

Testing?
Buy an insurance?
Penetration testing?
Formal verification?

Under what attacker model can we say that a thoroughly tested
or formally verified application is secure?
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How much testing do we have to do? When are we done?
• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .
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int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}
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How much testing do we have to do? When are we done?
• Which criterion is best?
• What about code that

doesn’t branch?
• What about code that

is stimulated by I/O?
• . . . in scenarios that

you can’t set up in the lab
(Delta Works, SDI, Space)?

• How do we know that we
haven’t missed critical
interactions?
Concurrency?

• Who writes all these tests?
• What about security

properties?
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How much testing do we have to do? When are we done?
Life-critical, Safety-critical, Ultra-reliable

• 10−9 probability of failure for a 1 hour mission
→ life-test for > 114,000 years (safety!)

Not Just Space Tech!
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Image: NASA, STS-132; FM @ NASA: https://shemesh.larc.nasa.gov/fm/fm-why.html
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How much testing do we have to do? When are we done?

“We’re building self-driving cars and planning Mars
missions – but we haven’t figured out how to make sure

people’s vacuum cleaners don’t join botnets.”

– Someone at JSConfAU16
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Source: https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09
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Between Testing and Formal Verification

Testing Formal Verification

• Find as many defects as
reasonably possible

Use mathematical methods to
convincingly argue that a system
is free of defects

• Gather evidence to show that a
specification is correctly implemented

Prove that implementation is a
refinement of the specification

• Relies on empirical evidence
and intuition

Aims to be exhaustive and
complete

• Expensive Expensive
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VeriFast (imec-DistriNet, [JSP10], [PMP+14])
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Normal Execution vs. Symbolic Execution
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output (unit tests, etc.)
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int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}
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Symbolic Execution (with Microsoft Z3)
Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a “constraint solver” to find concrete inputs that satisfy
a specific path.

(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))

(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

.
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int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover
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Symbolic Execution (with Microsoft Z3)
Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a “constraint solver” to find concrete inputs that satisfy
a specific path.

(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)
(push)
(assert (and (or a b) c))
(check-sat)(get-model)
(pop)
(assert (not

(and (or a b) c)))
(check-sat)(get-model)

-> sat
-> (model
(define-fun c () Bool false))
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int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}
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VeriFast (imec-DistriNet, [JSP10], [PMP+14])
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VeriFast (imec-DistriNet, [JSP10], [PMP+14])

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

20 /41 Jan Tobias Mühlberg Developing and integrating secure software



empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific test case.

VeriFast is automatic, complete and sound, and supports concurrency: Pre- and
post conditions must be satisfied for all executions

Static verification, no runtime overhead.

Writing pre- and post conditions isn’t easy. You may need a lot of annotations –
depending on program complexity and verification properties.

You are verifying one part of an application at the level of abstraction provided by
C or Java.

• Layer-below attacks? Compilation errors?
• Buggy or malicious libraries (not behaving to spec)?
• Buggy OS? Kernel-level malware?
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Between Testing and Formal Verification
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KLEE (Stanford, [CDE+08])
KLEE is a symbolic virtual machine built on top of LLVM

• No annotations but symbolic test cases
• Support for symbolic arguments, files and streams
• Exploration can be bounded wrt. input sizes, memory and CPU consumption

int main(void) {
bool a, b, c;
klee_make_symbolic(

&a, sizeof(a), "a");
// same for b and c
return (foo(a, b, c));

}

• Combines concrete with symbolic execution!
• Bug reports or crashes reported with real program inputs
• Achieve ≥ 90% coverage
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int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}
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Symbolic Execution in Attacks
Some techniques work on binary programs, in the
absence of source code.
AFL [Zal10], SAGE [GLM08], SOCA [ML10], etc.

Automated Crash Generation
. . . search for paths where a well-chosen input leads to
undefined behaviour or unhandled exceptions.
You have seen this for AFL.

Automated Exploit Generation
. . . as above, but find exploitable behaviour and
derive a “crazy machine” to execute code:

• Patch-based exploit generation [BPSZ08]
• Crash analysis and exploit generation [HHH+14]
• End-to-end solutions to generate zero-days [ACR+14]
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Other Tools

MS PEX . . . automatically generates test suites to achieve high code coverage in .NET
in a short amount of time [TdH08].

Facebook Infer is a static analysis tool - if you give Infer some Java or
C/C++/Objective-C code it produces a list of potential bugs.
http://fbinfer.com/

CBMC . . . is a Bounded Model Checker for C and C++ programs. CBMC verifies
array bounds (buffer overflows), pointer safety, exceptions and user-specified
assertions.
http://www.cprover.org/cbmc/

. . . is a verification tool for ANSI-C and C++ programs. SATABS transforms a
C/C++ program into a Boolean program, which is an abstraction of the original
program in order to handle large amounts of code.
http://www.cprover.org/satabs/
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Key Reinstallation Attacks
Breaking WPA2 by forcing nonce reuse: “The

attack works against all modern protected Wi-Fi networks.
[. . . ] if your device supports Wi-Fi, it is most likely affected.”

Analysis
• Problem in IEEE 802.11i (2004)
• Formal security properties by He et al. [HSD+05]
• Crypto in Wi-Fi are highly secure (iff secure nonces)

What went wrong?
• Two “unit proofs”, no “integration proof”
→ Formal correctness of protocols in integrated scenarios!
→ Correct implementations (verified and tested)

• That’s expensive! As compared to what?
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Discovered by Mathy Vanhoef at imec-DistriNet, https://www.krackattacks.com/, paper at CCS (November 2017)
Discussion of verification efforts by Matthew Green, https://blog.cryptographyengineering.com/

https://www.krackattacks.com/
https://blog.cryptographyengineering.com/
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Preventing Vulnerabilities Through Testing and Verification
Modern (embedded) software systems are huge!

• Interactions with
safety-critical
components not
well defined

• There are bugs in
established standards
and well-tested code

• Formal analysis and
verification reduces
the chance for bugs
to slip through

• Don’t forget to
isolate critical code!
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Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

28 /41 Jan Tobias Mühlberg Developing and integrating secure software

Source: https://en.wikipedia.org/wiki/Trusted_Computing
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Trusted Computing
According to Richard Stallman
Treacherous Computing: “The technical idea underlying treacherous computing is
that the computer includes a digital encryption and signature device, and the keys
are kept secret from you. Proprietary programs will use this device to control
which other programs you can run, which documents or data you can access, and
what programs you can pass them to. These programs will continually download
new authorisation rules through the Internet, and impose those rules automatically
on your work.”

In the light of recent incidents. . .
• Buggy software: think of OpenSSL’s Heartbleed in an enclave
• Side channels: timing, caching, speculative execution, etc.
• Buggy system: CPUs, peripherals, firmware (Broadpwn, Intel ME, Meltdown)
• Malicious intent: Backdoors, ransomware, etc.
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Source: https://www.gnu.org/philosophy/can-you-trust.html
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Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation
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Comparing Hardware-Based Trusted Computing Architectures
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Isolatio
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Code Confidentia
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Memory
Protectio
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Lightweight

Coprocessor

HW-Only TCB

Preemptio
n

Dynamic Layout

Upgradeable TCB

Backwards Compatib
ilit

y

Open-Source

Academic

Target ISA

AEGIS –

TPM – – – –
TXT x86_64

TrustZone ARM

Bastion UltraSPARC

SMART – – – AVR/MSP430

Sancus 1.0 MSP430
Soteria MSP430
Sancus 2.0 MSP430

SecureBlue++ POWER

SGX x86_64

Iso-X OpenRISC

TrustLite Siskiyou Peak

TyTAN Siskiyou Peak

Sanctum RISC-V

= Yes; = Partial; = No; – = Not Applicable

Adapted from
“Hardware-Based
Trusted Computing
Architectures for
Isolation and
Attestation”, Maene et
al., IEEE Transactions
on Computers, 2017.
[MGdC+17]
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Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives

• Software Component
Isolation

• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/
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Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives

• Software Component
Isolation

• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/
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N = Node; SP = Software Provider / Deployer
SM = protected Software Module
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Attestation and Communication with Sancus
Ability to use KN,SP,SM proves the integrity and isolation
of SM deployed by SP on N

• Only N and SP can compute KN,SP,SM
N knows KN and SP knows KSP

• KN,SP,SM on N is computed after enabling isolation
No isolation, no key; no integrity, wrong key

• Only SM on N is allowed to use KN,SP,SM
Through special instructions

Remote attestation and secure communication by
Authenticated Encryption with Associated Data

• Confidentiality, integrity and authenticity
• Encrypt and decrypt instructions use KN,SP,SM of the calling SM
• Associated Data can be used for nonces to get freshness
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Secure Automotive Computing with Sancus [VBMP17]
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Modern cars can be hacked!
• Network of more than 50 ECUs
• Multiple communication networks
• Remote entry points
• Limited built-in security mechanisms Miller & Valasek, “Remote exploitation of an unaltered passenger vehicle”, 2015

Sancus brings strong security for
embedded control systems:

• Message authentication
• Trusted Computing: software component

isolation and cryptography
• Strong software security
• Applicable in automotive, ICS, IoT, . . .
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My usual work: Trusted Computing for Embedded Control Systems

“VulCAN: Efficient Component Authentication and Software Isolation for
Automotive Control Networks”, Van Bulck et al., ACSAC 2017. [VBMP17]
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Summary
Fuzzing, Testing & Formal Verification

1 There are automated techniques to find
vulnerabilities and to generate exploits

2 Securing application code requires dedicated
testing and verification

3 Know your system, be selective

Trusted Computing & Sancus
1 Strong application isolation and attestation
2 Requires correct hardware and software

Security
1 Understand the system
2 Understand the security requirements
3 Understand the attacker
4 Understand and embrace change
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Thank you!

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

– Donald Knuth

Thank you! Questions?

https://distrinet.cs.kuleuven.be/
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